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Abstract

A direct numerical simulation has been performed for the case of a natural convection ¯ow between two
di�erentially heated vertical walls for a range of Rayleigh numbers (5.4� 105<Ra<5.0� 106). The simulation data
are compared with experimental data of Dafa'Alla and Betts [Experimental study of turbulent natural convection in

a tall cavity, Exp. Heat Transfer 9 (1996) 165±194] and the agreement is found to be acceptable. Given the
numerical data we consider the scaling behaviour of the mean temperature, the mean velocity pro®le and of the
pro®les of various turbulence statistics. Point of departure is the approach proposed by George and Capp [A theory
for natural convection turbulent boundary layers next to heated vertical surfaces, Int. J. Heat Mass Transfer 22

(1979) 813±826] who have formulated scaling relationships valid, respectively, in the near-wall inner layer and in the
outer layer in the centre region of the channel. Matching of the scaling relationships in the overlap between the
inner and outer region leads to explicit expressions which can be used as wall functions in computational

procedures. The DNS data con®rm the results of George and Capp for the scaling of the mean temperature pro®le.
For the mean velocity pro®le our DNS data support another scaling in terms of a defect law for the velocity
gradient in the inner layer. The scaling of George and Capp is also found to apply to the Reynolds stress, the

temperature variance and the temperature ¯uxes. However, the velocity variances again seem to follow a di�erent
scaling. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Turbulence can be characterized in terms of its pro-
duction process, the most important ones in practice
being shear and buoyancy. The physics and conse-

quences of these production processes are best studied
in a simple ¯ow geometry to avoid other disturbing in-
¯uences. An example of such a simple ¯ow geometry is

given by two parallel in®nite walls and it is denoted as
a channel or duct. The advantage of studying turbu-

lence in this geometry is that all ¯ow statistics depend
only on the coordinate perpendicular to the wall and
are independent of the other two directions. Shear ¯ow

in a channel has, for instance, been studied by a num-
ber of authors, e.g. Antonia et al. [1] by means of ex-
periment and numerical simulation. In this paper we

concentrate on the other production process, i.e. buoy-
ancy, where a ¯ow dominated by buoyancy production
is called natural convection.
To study turbulence production by buoyancy in a

channel geometry one has to specify the direction of
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gravity with respect to the channel wall. The most fam-

iliar case is when gravity is perpendicular to the walls.
The ¯ow is then denoted as Rayleigh±BeÂ nard convec-
tion. The other case is for gravity parallel to the wall.

A natural convection ¯ow results in this geometry
when the two walls are kept at a di�erent temperature.
For small temperature di�erences the ¯ow is laminar
and when a certain critical value [2] is exceeded, the

¯ow becomes turbulent. Here, we will turn to this lat-
ter case of a turbulent natural convection ¯ow between
two vertical, di�erentially heated walls. It has been

relatively little studied, in comparison with the case
between horizontal walls [3].
This ¯ow geometry is interesting from a practical

point of view because it is relevant for problems invol-
ving heat transfer from a vertical wall. Examples are
heating and cooling of building spaces, insulation

properties of double paned windows or cooling of elec-
tronic components. However, the problem is also inter-
esting from a fundamental point of view. For instance,
in contrast to the more familiar Rayleigh±BeÂ nard con-

vection a mean ¯ow develops which complicates the
turbulence dynamics due to the additional e�ect of tur-
bulence production by shear. Although this may per-

haps be interpreted as the ¯ow being in¯uenced by
both buoyancy and shear, we shall nevertheless remain

with our characterization as pure natural convection

because the mean ¯ow is the direct result of buoyancy.
A perhaps interesting fact to note here is that the tur-
bulence production by shear occurs in the same direc-

tion as the buoyant production. In most other ¯ows
where both buoyant and shear production play a role,
the two processes usually act in di�erent directions.
In view of experiments it should be mentioned that

our two plate geometry is of course idealized and it
cannot be realized in the laboratory. Nevertheless,
observational studies on related geometries are avail-

able. First of all, these are the studies carried out in
tall cavities as reported by Elder [4], Betts and
Dafa'Alla [5] and Dafa'Alla and Betts [6]. Another re-

lated geometry is a single, vertically heated wall on
which experimental studies have been carried out by
Cheesewright [7] and Tsuji and Nagano [8±10]. The

channel geometry can easily be represented by numeri-
cal simulations of turbulence. Numerical studies of this
problem have been reported by Phillips [11] and by
Boudjemadi et al. [12]. In the present investigation we

shall also make use of numerical simulation. In par-
ticular we shall use Direct Numerical Simulation
(DNS) in which all turbulent ¯ow motions are resolved

and no modelling assumptions are made.
The results of DNS in comparison with experimental

Nomenclature

ft horizontal temperature ¯ux
g acceleration of gravity
h channel width

H modi®ed Rayleigh number
Lx, Ly, Lz size of computational domain in the x-, y- and z-direction
Nx, Ny,Nz number of grid points in the x-, y- and z-direction

Nu Nusselt number
Pr Prandtl number
Ra Rayleigh number

T temperature
u velocity component along the x-axis
v velocity component along the y-axis
w velocity component along the z-axis

wi inner velocity scale
wo outer velocity scale
x coordinate direction perpendicular to walls

y coordinate direction in the horizontal direction parallel to the wall
z coordinate direction in the vertical direction parallel to the wall

Greek symbols
b volumetric expansion coe�cient

DT temperature di�erence between the two walls
k heat di�usion coe�cient
n kinematic viscosity
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data have an advantage, they lead to more complete

information on the ¯ow at hand and also usually lead
to more accurate statistics. The latter property is in
particular, useful for the present study where we con-

centrate on the scaling behaviour of the mean ¯ow and
turbulence quantities. Scaling is a well-established
method to study turbulent and perhaps the most well-

known example is the scaling of near-wall turbulent
shear ¯ow. Here, one distinguishes between an inner

layer which depends on wall characteristics and an
outer layer which depends on the general ¯ow ge-
ometry. In each region scaling laws can be formulated

and these require matching in an overlap region
between the inner and outer layer. As a direct conse-

quence of matching an explicit expression for the vel-
ocity and temperature pro®le follows: the well-known
logarithmic pro®le. This pro®le is sometimes also

denoted as a wall function because it can be used in
computations to prescribe the velocity function near
the wall. For some recent views on this scaling of

near-wall shear ¯ow we refer to Bradshaw and Huang
[13].

Scaling has also been applied to natural convection
¯ow. In the Rayleigh±BeÂ nard convection an approach
in terms of an inner and outer layer has been con-

sidered. Matching leads again in this case to an explicit
expression for the temperature pro®le [14]. The result-

ing pro®le seems to agree with laboratory experiments
but not with atmospheric data [15]. Another result fol-
lowing from this scaling is an explicit relationship

between the Nusselt (Nu ) and Rayleigh (Ra ) numbers
following Nu0Ra 1/3. Such an expression seems indeed
to be observed for relatively small Rayleigh numbers

but at higher Rayleigh numbers it has been argued
that the exponent in this heat transfer law changes to

2/7 [16].
Scaling of a turbulent natural convection ¯ow along

a vertical wall has been hardly explored. The only sys-

tematic study is reported by George and Capp [17]
who again propose a scaling in terms of an inner and

outer layer. The resulting scaling relationships or the
wall functions which follow from matching both layers,
seem to agree with measurements for the mean tem-

perature pro®le but not for the velocity pro®le. In sev-
eral other studies [18,19] the existence of wall
functions, in particular for the mean velocity, has been

considered without ®nding a completely satisfactory
result. Nevertheless, for practical applications wall

functions would be very useful because their appli-
cation in numerical computations avoids explicit com-
putation of the near-wall temperature and velocity

pro®le. Namely, both the temperature and velocity
have a large gradient in the neighbourhood of the wall
and the need to resolve this gradient would be compu-

tationally, very expensive. Furthermore, the use of a
wall function enforces correct behaviour for the heat

transfer which is obviously important for practical ap-
plications.

In view of the discussion given above, it is our
objective to continue the study on the scaling of turbu-
lent natural free convection in the neighbourhood of a

vertical wall. The point of departure is the scaling
approach in terms of an inner and outer layer ®rst
explored by George and Capp [17]. The availability of

our DNS results allows a fresh approach which may
be explored in order to produce new insight in the
scaling behaviour of this ¯ow. Using the DNS data we

aim to formulate inner- and outer-layer scaling ex-
pressions for the mean temperature and velocity pro®le
and also for various turbulence quantities.
Furthermore, based on the matching of these scaling

relationships, we shall attempt to derive wall functions.
The outline of this paper is as follows: in the next

section the governing equations and their solution with

DNS is discussed. In the following section we consider
the results of the DNS and compare these with exper-
imental data. In the sections thereafter, we explore the

scaling of the DNS data. First, we will select the
appropriate scaling parameters in each region. Based
on these parameters we will then consider the scaling
of various variables and the consequences. We end this

study with some conclusions.

2. Basics

2.1. Flow geometry and governing equations

A schematic illustration of the ¯ow geometry is
given in Fig. 1. The distance between the two walls is

h and the temperature di�erence DT. The kinematic
viscosity n, the heat di�usion coe�cient k and the
volumetric expansion coe�cient b are ¯uid properties.

Fig. 1. Flow geometry and de®nition of the coordinate sys-

tem.

T.A.M. Versteegh, F.T.M. Nieuwstadt / Int. J. Heat Mass Transfer 42 (1999) 3673±3693 3675



The origin of the x-coordinate is put on the left wall
so that the centre of the channel is given by x=h/2. As

a result of the boundary conditions, the mean tempera-
ture and velocity pro®le are antisymmetric with respect
to the plane x=h/2. The derivatives of these pro®les

and also the turbulent ¯uxes and variances are sym-
metrical with respect to the same plane. Therefore, it
will be su�cient to present only results for the region
given by 0<x< h/2. The z-coordinate is chosen in the

vertical direction, i.e. along the direction of gravity.
The y-coordinate lies in the spanwise direction. The
temperature is denoted by T and the velocity com-

ponents along the x-, y- and z-directions by u, v and
w, respectively.
The natural convection ¯ow is driven by the tem-

perature di�erence DT in combination with the accel-
eration of gravity g. Given these variables and the
parameters introduced above, we can de®ne a dimen-

sionless parameter which characterizes the ¯ow and
which is known as the Rayleigh number

Ra � gbDTh3

nk
: �1�

It will turn out that a more convenient parameter in

our study is the `modi®ed' Rayleigh number, H, which
is de®ned as

H � Pr Ra � gbDTh3

k2
�2�

where the Prandtl number Pr is de®ned as

Pr � n
k
: �3�

We also introduce the Nusselt number which can be
interpreted as the non-dimensional temperature ¯ux.
Its de®nition reads

Nu � fth

DTk
: �4�

Here, ft is the horizontal temperature ¯ux de®ned as

ft � k
@T

@x

����
0

�5�

where the di�erential @T/@x is evaluated at the wall as
indicated by the index 0.
In the following we shall use dimensionless variables,

unless explicitly mentioned otherwise. To non-dimen-
sionalize all physical variables we employ the par-
ameters DT, h and k. The governing equations in

terms of non-dimensional variables read

@ui
@x i
� 0

Dui
Dt
� H�Tÿ Tr�di3 � Pr

@ 2ui
@x 2

j

DT

Dt
� @ 2T

@x 2
j

�6�

where Tr is a reference temperature equal to the aver-

age temperature between the two walls. It then follows
that the vertical velocity averaged over an arbitrary
horizontal plane, i.e. 0 < x < h and 0 < y < Ly,

becomes zero. The temperature di�erence, TÿTr, con-
tributes only to the equation for the vertical velocity
component as enforced by the Kronecker delta di3 in

(6). We have used the Boussinesq approximation, i.e.
the ¯ow can be considered as incompressible and the
temperature di�erence only plays a role in a combi-
nation with the acceleration of gravity.

We consider here turbulent ¯ow. In that case each
variable can be subdivided in a mean ¯ow (indicated
by an overbar1) and a ¯uctuation (indicated by a

prime). The mean ¯ow in the channel under the in¯u-
ence of the temperature di�erence DT is stationary and
homogeneous in the y- and z-direction. Consequently,

all turbulence statistics are functions of the coordinate
x only. From (6) it then follows that the equations for
the mean ¯ow become

0 � gb� �T ÿ Tr� � @

@x

�
ÿ u 0w 0 � n

@ �w

@x

�
�7�

Table 1

Computational details of the DNS-simulations of the free convection ¯ow between two in®nite, di�erentially heated, vertical walls

Computational domain Lz�Ly�Lx=12 h� 6 h�h

Number of grid points (coarse resolution) Nz�Ny�Nx=180� 90� 48

Number of grid points (®ne resolution) Nz�Ny�Nx=432� 216� 96

Min/max cell in x-direction (coarse resolution) Dxmin=0.000975h, Dxmax=0.00292h

Min/max cell in x-direction (®ne resolutions) Dxmin=0.000439h, Dxmax=0.00131h

1 In the ®gures the notation of an average will be given by

angular brackets with the exception of the mean vertical vel-

ocity which will be denoted by an upper case letter.
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0 � @

@x

�
ÿ u 0T 0 � k

@ �T

@x

�
: �8�

2.2. DNS

The set of Eqs. (6) is solved numerically in a compu-

tational domain in the form of a rectangular box. The
size of the box in the three coordinate directions is
given in Table 1. We have found that the numerical

results depend on this size. For instance, computations
with a domain size of Lz�Ly�Lx=2.5h� 1.0h� 1.0h,
which was used by Boudjemadi et al. [12], lead to
di�erences in comparison with the results for our lar-

ger domain. For instance, the mean velocity in our
case was found to be smaller than the values obtained
by Boudjemadi et al. [12]. However, when we adopted

the same size of the computational domain, our results
turned out to be exactly equal to those of Boudjemadi
et al. [12]. This latter fact may also be considered to be

an independent test for the correctness of our numeri-
cal code.
On the computational domain mentioned above, a

Cartesian grid is introduced. In the y- and z-direction

a constant grid spacing is used. In the horizontal x-
direction the grid spacing is variable with the minimum
size near the wall and the maximum size near the cen-

treline. The computations have been carried out with a
coarse and ®ne grid (see Table 1 for details). In
Versteegh [20] it has been estimate that the ®ne grid is

su�cient to resolve all ¯ow scales for Ra E 5 � 106

which sets the largest Rayleigh number that we can
compute with our DNS.

The numerical technique that we have used, is a
®nite volume scheme with a second-order discretization
method for both the non-linear advection and the lin-
ear di�usion terms. The time-stepping method is the

explicit Adams±Bashford method which is second-
order in time. The constraint of continuity is imposed
by means of the pressure correction method. This

method leads to a Poisson equation for the pressure
which is solved by a Fast-Fourier method in the homo-
geneous y- and z-direction and a ®nite di�erence

method in the inhomogeneous x-direction. As men-
tioned above, we have performed our DNS on two
grids. By combination of the results from both grids
with the help of the so-called Richardson extrapol-

ation, we can obtain a more accurate solution which in
theory can reach fourth-order (on a uniform grid and
for a su�ciently smooth solution). In Versteegh [20] it

is discussed that in our case Richardson's extrapolation
leads to higher accuracy than second order.
For the boundary conditions on the two vertical

walls we employ no-slip conditions for the velocity and
a constant value for the temperature. In the homo-
geneous y- and z-direction periodic conditions are

applied. In view of our limited domain in these direc-

tions this boundary condition is only acceptable when
the largest turbulence scales are smaller than about
half the domain size. This requirement has been
checked by computation of the correlation functions in

the y- and z-directions and these were indeed found to
drop to small values over a distance of half the domain
size.

Simulations have been performed for four values of
the Rayleigh number given in Table 2. The choice for
the largest Rayleigh number is set by the grid size as

discussed above. The lowest Rayleigh number has been
chosen equal to the value used by Boudjemadi et al.
[12] so that comparison with their results can be car-

ried out. The remaining two Rayleigh numbers have
been chosen to cover the interval between Ra=5.4 �
105 and Ra=5 � 106. Furthermore, they are close to
the values of the Rayleigh number used in the exper-

iments of Dafa'Alla and Betts [6]. In all cases the
Prandtl number is taken equal to Pr=0.709.
In the following we will only present results of tur-

bulence statistics. For results on the instantaneous ¯ow
and temperature ®eld, for instance in terms of coherent
structures, we refer to Versteegh and Nieuwstadt [21].

Statistics of the simulation data are computed by
means of taken an average over the y- and z-plane.
Given the periodic boundary conditions in these direc-
tions, it can be shown that this average has the same

properties as an ensemble average. Therefore, the nu-
merical average can be interpreted as being similar as
the average applied in (7) and (8) and consequently it

is again indicated by an overbar.

3. DNS results and comparison with experimental data

In this section we will present the results from our
DNS and compare these with the experimental data of

Dafa'Alla and Betts [6]. Let us ®rst discuss some
details of the experimental data. The experiments have
been carried out in a tall cavity with a vertical length

of Lz/h=28.6 and a width of Ly/h=6.8. The spacing
between the two walls is h=0.076 m. The working
medium is air. Results have been obtained for two

Table 2

The Rayleigh and modi®ed Rayleigh number of the four

simulations together with the symbol for each computation

that will be used in the following ®gures

Ra H Symbol

5.4�105 3.829�105 w
8.2�105 5.833�105 r
2.0�106 1.418�106 q
5.0�106 4.254�106 t
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values of the temperature di�erence DT, i.e. 19.6 and

39.18C, for which the Rayleigh numbers become
Ra=8.6 � 105 and Ra=1.43 � 106, respectively.
Temperatures are measured with the help of a thermo-
couple with an accuracy of 0.18C and a response time

of 0.065 s. A Laser Doppler Velocimetry (LDV) system
is used to measure velocities. All data presented here,
have been obtained in the mid-region of the cavity, i.e.

halfway between the length Lz and width Ly.
In Fig. 2 we show the DNS data for the mean tem-

perature pro®le for the four values of the Rayleigh

number. We observe that for the increasing Rayleigh
number the temperature pro®le develops a thinner
boundary layer along the wall. In Fig. 3 the DNS data

are compared with the experimental observations and
the agreement can be called quite reasonable.
The DNS data for the mean velocity pro®le are

shown together with the experimental data in Fig. 4. It
is clear that the mean velocity depends strongly on the
Rayleigh number with the maximum velocity becoming

larger for the increasing Rayleigh number. The agree-

Fig. 2. The mean temperature pro®les obtained from the

DNS data for the four values of the Rayleigh number.

Fig. 3. Comparison of the DNS data (dashed line) with the experimental data (symbols) for RaDNS=8.2 � 105 and

RaExp=8.6� 105 (left ®gure) and for RaDNS=2� 106 and RaExp=1.43�106 (right ®gure).

Fig. 4. The mean velocity pro®les obtained from the DNS

data (lines) and the experimental data (symbols) for four, re-

spectively two, values of the Rayleigh number.

T.A.M. Versteegh, F.T.M. Nieuwstadt / Int. J. Heat Mass Transfer 42 (1999) 3673±36933678



ment between the DNS data and experimental results
in this case, can be called correct, only qualitatively,
i.e. the experimental velocities also increase when the
Rayleigh number becomes larger and the maximum

value of the velocity occurs at about the same x-lo-
cation. However, the experimental velocities are con-
siderably larger than the numerical results and for this

deviation a suitable explanation is not available.
Next we consider the variances of the turbulent vel-

ocity ¯uctuations. Experimental data are only available

for the vertical component, i.e. w '2, and for the hori-
zontal component along the x-direction, i.e. u '2. The
results are shown in Fig. 5. The agreement between the

numerical and experimental data can again be called
quite reasonable.
Let us now consider the variables for which only nu-

merical data are available. The ®rst is the variance of

the other horizontal velocity component which is
shown in Fig. 6. A perhaps more interesting variable is
the Reynolds stress which is given in Fig. 7, where we

®nd that similar as for the mean velocity pro®le, the
Reynolds stress is a strong function of the Rayleigh
number. However, the most interesting result is the

behaviour of the Reynolds stress near the wall which is
also shown in Fig. 7 by means of an enlargement. It
appears that the Reynolds stress is negative only very
close to the wall, but that it changes to a positive

value near x20.015. On the other hand Fig. 4 shows
that the mean velocity gradient changes sign near
x20.7. Let us assume for the moment that the gradi-

ent transfer hypothesis for the Reynolds stress holds,
which reads

ÿu 0w 0 � K
@ �w

@x
:

The near-wall behaviour mentioned above of the
Reynolds stress and of the mean velocity pro®le,
implies now that the exchange coe�cient K must be
negative for00.015< x<00.7. From a physical point

of view the concept of an exchange coe�cient which
implies transport down the gradient, only makes sense
when the exchange coe�cient is larger than zero. The

conclusion must, therefore, be that the gradient trans-
fer hypothesis cannot be valid in this near-wall region.
The consequence is that all modelling approaches for

this ¯ow which are based on a gradient-transfer hy-
pothesis, are fundamentally incorrect. Such a gradient-
transfer approach was, for example, used by Henkes
and Hoogendoorn [18] to derive wall functions for the

mean velocity.

Fig. 5. The variance of the velocity ¯uctuations in the x-direction (left) and in the z-direction (right) for the DNS data (lines) and

the experimental data (symbols) for di�erent values of the Rayleigh number.

Fig. 6. The various of the velocity ¯uctuations in the y-direc-

tion computed for the DNS data for four values of the

Rayleigh number.
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Another consequence of this behaviour of the

Reynolds stress is that the turbulence production by
shear becomes negative in the near-wall region. In
other words the turbulence feeds energy to the mean

¯ow. The maintenance of turbulence itself must thus
rely on other processes. Data on the energy budget as
presented by Boudjemadi et al. [12] and Versteegh and

Nieuwstadt [22] show that apart from buoyancy pro-
duction transport of turbulence from the centre region
is a major source of turbulence in the wall region. This

result for the near-wall energy budget is quite di�erent
from the other cases of near-wall turbulence.

4. Scaling of mean pro®les

4.1. Scaling parameters

In this section we introduce the scaling parameters
that we will use to put the various statistical quantities

in their non-dimensional similarity form. We start with
the assumption ®rst adopted by George and Capp [17]
that we can distinguish between an inner and outer
layer. The inner layer must be characterized by a par-

ameter which describes the ¯ow condition close to the
wall and which is independent of the (large scale) ¯ow
geometry. It seems most obvious to select as this par-

ameter, the heat di�usion coe�cient k. In the outer
layer in fully developed turbulence the parameter k
should by de®nition, not play a role. Here, the ¯ow

geometry is the determining factor and therefore, we
select the channel width h as the characteristic par-
ameter in this region.

Next, we need a parameter that can characterize the

production of turbulence by buoyancy. Let us consider
the equation for the mean temperature given in (8).
This equation can be integrated once with as a result

ft � ÿu 0T 0 � @
�T

@x
�9�

where ft is the horizontal temperature ¯ux (>0) which
is representative for the heat ¯ux ¯owing from the left-
hand to the right-hand wall. Eq. (9) implies that this

horizontal temperature ¯ux consists of a turbulence
and molecular contribution and that it is constant, i.e.
$f(x ). Consequently, ft seems to be a parameter which

is relevant everywhere in the ¯ow and therefore, we
select ft as a characteristic scaling parameter. It should
be mentioned that ft has also been proposed by

George and Capp [2] as a scaling parameter.

Fig. 7. The Reynolds stress obtained from the DNS data for the four values of the Rayleigh number (left) with an enlargement of

the Reynolds stress near the wall (right).

Table 3

Velocity, temperature and length scale for the inner and outer

layer based on the characteristic parameters gb, ft, k and h

Scaling parameter Non-dimensional form

Inner layer

Velocity wi=( gbftk )
1/3 (wih/k )=(Nu H )1/4

Temperature Ti=ft/wi (Ti/DT )=Nu/(Nu H )1/4

Length li=k/wi (li/h )=(Nu H )ÿ1/4

Outer layer

Velocity wo=( gbfth )
1/3 (wo/k )=(Nu H )1/3

Temperature To=ft/wo (To/DT )=Nu/(Nu H )1/3

Length lo=h
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Finally, to complete our selection of scaling par-
ameters we choose the buoyancy parameter gb which
can be considered as the parameter that is character-

istic of the ¯uid medium.
Based on the parameters introduced above, we can

de®ne a velocity, temperature and length scale for the
inner and outer layer. The results are summarized in

Table 3.

4.2. Scaling of the mean temperature pro®le

With the help of the scaling parameters introduced
in the previous section, we can formulate scaling re-

lationships valid for the inner and outer layer. The
result reads

Tw ÿ T

Ti

� fT

�
x

li

�
�10�

Tÿ Tr

To

� FT

�
x

h

�
�11�

where the notation fT and FT has been used to indicate
unknown functional relationships which cannot be

obtained from the scaling analysis and which should
for instance follow from experiments. We note that in
each region a formulation in terms of a temperature

defect law has been adopted.
Next we assume that both scaling laws remain valid

in an overlap region between the inner and outer layer.

In this overlap region both expressions (10) and (11)
should match. In view of the formulation in terms of a
defect law, we can perform the matching procedure

only on the temperature gradient. A matching con-
dition as for instance outlined in Tennekes and
Lumley [23], takes the form

lim x=li41 ÿ
Ti

li
f 0T
�
x

li

�
� lim x=h40

To

h
F 0T

�
x

h

�
:

With the help of the identity

Ti

To

�
�
h

li

�1=3

which follows from the results given in Table 3 and
given the fact that at the same time the limit h/li41
should be satis®ed, we ®nd the following matching
condition

ÿ
�
x

li

�4=3

f 0T
�
x

li

�
�
�
x

h

�4=3

F 0T
�
x

h

�
� ÿc1

which c1 is a constant. Integration then leads to the
following expressions for the temperature pro®le in the
overlap region

Tw ÿ T

Ti

� ÿc1
�
x

li

�ÿ1=3
�A1 �12�

Tÿ Tr

To

� c1

�
x

h

�ÿ1=3
�B1 �13�

where A1 and B1 are two integration constants.
In Fig. 8 we have plotted the DNS data in terms of

inner and outer layer scaling. In the same ®gure we

Fig. 8. DNS data for the temperature pro®le in inner-layer scaling (left) and outer-layer scaling (right); the solid lines give the

matching result mentioned in the text; the meaning of the symbols is given in Table 2.
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also show the expressions (12) and (13). It is clear that
all DNS data conforms excellently to both inner- and

outer-layer scaling. Moreover, the expressions (12) and
(13) with c1=4.2 and with A1=5.0 and B1=ÿ5.0 form
a very good ®t to the data.
A further result can be obtained from the matching

expressions (12) and (13) by adding both equations
after multiplication with Ti and To, respectively. This

leads to the following result

Nu3=4
�
1� B1

A1
�Nu �H �ÿ1=12

�
� 1

2�A1
H 4 �14�

which can be interpreted as a heat transfer law.
In Fig. 9 the DNS data for the Nu and H are shown

in comparison with the expression (14) with
A1=ÿB1=5.0. It is clear that the matching expression
agrees excellently with the DNS data which in our

opinion con®rms the consistency of our outer- and
inner-layer scaling approach of the temperature. We
also show in Fig. 9 a ®t to the data in terms of power

law given by

Nu � 0:071H 1=3:

Such an expression is frequently used as a heat transfer
law in practice. It is clear that this power law given an

equally good approximation to the data as the results
of the theoretical expression (14). In this respect we
note that when H and consequently also Nu increase,

the expression (14) reduces to such a 1/3-power law.
Finally, it should be mentioned that the experimental
data of Dafa'Alla and Betts [6] are also given in Fig. 9
and they agree excellently with the DNS results.

4.3. Scaling of the mean velocity pro®le

From the equation of motion (7) it follows that the
mean velocity pro®le is directly connected to the
Reynolds stress u 'w '. Therefore, we begin this section

Fig. 9. The Nusselt number versus the modi®ed Rayleigh

number; the closed circles denote the DNS data and the

closed diamond the experimental data of Dafa'Alla and Betts

[6]; the dashed line follows from an expression obtained by

matching the temperature pro®le in the inner and outer layer;

the solid line gives a best ®t in terms of the expression Nu2
H 1/3.

Fig. 10. DNS data for the Reynolds-stress pro®le in inner-layer scaling (left) and outer-layer scaling (right); the dashed lines give

the matching result mentioned in the text; the meaning of the symbols is given in Table 2.
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on the scaling of the mean velocity pro®le by ®rst con-
sidering the scaling of the Reynolds stress.

Let us assume that the Reynolds stress follows the
same inner- and outer-layer scaling as we have found
to be valid for the temperature pro®le. This assump-

tions seems reasonable because apart from connecting
the Reynolds stress with the mean velocity pro®le (7) it
also connects the Reynolds stress with the mean tem-

perature pro®le. The following scaling relationships for
the inner and outer layer should hold

u 0w 0

w2
i

� guw

�
x

li

�
�15�

u 0w 0

w2
o

� Guw

�
x

h

�
�16�

where the velocity and length scales are the same as
de®ned in Table 3. The results for the inner- and

outer-layer scaling of the u 'w ' are shown in Fig. 10.
Comparing these scaling results with the original shear
stress pro®les given in Fig. 7, we ®nd that the inner-
and outer-scaling is indeed able to collapse the

Reynolds stress data reasonably well onto a single
curve. Therefore, we venture to conclude that the
Reynolds stress obeys standard inner- and outer-layer

scaling.
Subsequently, we assume the existence of an overlap

region between the inner and outer layer. We can then

de®ne a similar matching procedure as has been used
for the temperature pro®le in Section 4.2 with the
di�erence that matching can now be applied directly to

the Reynolds stress itself instead of to its gradient. The
result of matching is again an explicit expression for
the Reynolds stress which in inner and outer scaling
reads

u 0w 0

w2
i

� c2

�
x

li

�2=3

�17�

u 0w 0

w2
o

� c2

�
x

h

�2=3

: �18�

These relationships are also shown in Fig. 10 with the
value 1.45 for the constant c2. A reasonable agreement

is found between the scaling laws and the matching ex-
pression between 7<x/li<15 or 0.15<x/h<0.3.
Having established the scaling for the Reynolds

stress, we now consider the scaling of the mean vel-
ocity pro®le. As already mentioned above, the mean
velocity and the Reynolds stress are connected through

the equation of motion (7). Therefore, we ®rst investi-
gate the consequences of this equation. Integrating
between 0 and x we ®nd

0 � H

�x
0

� �T ÿ Tr� dsÿ u 0w 0�x� � Pr

 
d �w

dx
ÿ d �w

dx

����
0

!

where s denotes an integration variable. We have used
the boundary condition u 'w '(0)=0. The dw/dxv0 is the
velocity gradient at the wall. Performing a second inte-

gration leads to

0 � H

�x
0

�xÿ s�� �T ÿ Tr� dsÿ
�x
0

u 0w 0�s�

ds� Pr

 
�w �x� ÿ d �w

dx

����
0

x

!
:

�19�

If we evaluate the latter equation at x=0.5 and substi-
tute the symmetry condition for the velocity w(0.5)=0,

we ®nd the following relationship for the velocity gra-
dient at the wall

u2� � Pr
d �w

dx

����
0

� 2

"
H

�1=2
0

�
1

2
ÿ s

�
� �T ÿ Tr� ds

ÿ
�1=2
0

u 0w 0�s� ds
#
:

�20�

Here u� is the (non-dimensional) friction velocity
which is de®ned as

u2� �
toh

2

rk2

with to the shear stress at the wall.
Eq. (20) is now taken as the point of departure to

determine the scaling behaviour of the velocity pro®le.
We ®rst consider the integral of the Reynolds stress in
(20). As a result of the inner- and outer-layer scaling
found above, we can write the following composite ex-

pression for the Reynolds stress

u 0w 0 � w2
i guw

�
x

li

�
� w2

oGuw

�
x

h

�
ÿ c2w

2
o

�
x

h

�2=3

�21�

where we have dropped our non-dimensional notation.
This expression for the Reynolds stress is uniformly

valid in the whole channel, i.e. both in the inner and
outer layer. The explanation for the third term on the
right-hand-side of (21) follows from the fact that the

functions guw and Guw are both, by de®nition, consist-
ent with matching. Therefore, their sum in (21) would
imply that the matching result is taken into account

twice and consequently, we must subtract the matching
result once. Substitution of this expression in the inte-
gral of the (non-dimensional) Reynolds stress leads to
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�1=2
0

u 0w 0�s� ds � �HNu�1=4
�1
0

guw�x� dx

� �H Nu�2=3
 �0:5

0

Guw�Z� dZÿ 3

5
0:55=3c2

! �22�

where we have used Table 3 to transform this ex-
pression in non-dimensional form given the pro®le (21)
and where we have set h/(2 li) 41 which as follows

from Table 3 is the appropriate limit for large values
of Ra. The two integrals on the right-hand-side are
now, by de®nition, O(1). With the help of the approxi-

mate relationship Nu2H 1/3, we can then estimate the
Reynolds-stress integral as follows

�1=2
0

u 0w 0�s� ds ' O�H 1=3� �O�H 8=9� �23�

where the ®rst term on the right-hand-side results from

the contribution of the inner layer and the second term
from the outer-layer contribution. We thus ®nd that
the integral of the Reynolds stress is dominated by the

contribution of the outer layer.
Next we consider the temperature integral in (20).

Using the scaling results for the temperature discussed

in Section 4.2, we can again de®ne a composite ex-
pression for T which is uniformly valid in the channel.
In dimensional notation it reads

� �T ÿ Tr� � �Tw ÿ Tr� ÿ Ti fT

�
x

li

�
� To

"
FT

�
x

h

�

ÿ c1

�
x

h

�ÿ1=3
ÿB1

#
: �24�

Following the same procedure as for the derivation of
(23) we obtain the following estimate for the (non-
dimensional) temperature integral

H

�0:5
0

�
1

2
ÿ s

�
� �T ÿ Tr� ds ' O�H � �O�H 8=9�: �25�

Again the integral can be considered as being made up
out of two contributions with the ®rst term on the
right-hand-side of (25) resulting from the inner layer

and the second term resulting from the outer layer. In
this case the contribution from the inner layer seems to
dominate, although its deviations from the contri-
bution from the outer layer is small.

Comparison of (23) with (25) shows that the term
representative for the outer-layer contribution has the
same magnitude in both equations. This result is con-

sistent with a balance between the Reynolds stress and
buoyancy e�ects in the outer layer where viscous
e�ects are, by de®nition, small. For the inner layer the

contribution from the temperature integral is O(H )
which is much larger than the contribution from the
Reynolds stress integral which is O(H 1/3). Therefore,

Fig. 11. DNS data for the mean velocity gradient at the wall, i.e. x=0 (left) and at the centre of the channel, i.e. x=0.5 (right) as

a function of H.
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Fig. 12. DNS data for the pro®le of the mean velocity gradient in inner-layer scaling (left) and outer-layer scaling (right); the mean-

ing of the symbols is given in Table 2.

in the inner region Reynolds stresses cannot balance
buoyancy and we must allow a balance between the

temperature integral and the viscous stress at the wall
which is given by the term on the left-hand-side of
(20). However, if the velocity in the inner layer would

obey inner-layer scaling, the viscous stress at the wall
should scale according to

Pr
d �w

dx

����
0

' Pr wi=li � O�Pr H 2=3�:

It is clear that for Pr2O(1) such a scaling can never
balance a O(H ) buoyancy force. The conclusion must
be that standard inner-layer scaling cannot be valid for

the velocity gradient near the wall. A balance between
the viscous and buoyancy term near the wall is only
possible when the velocity gradient at the wall scales

according to

d �w

dx

����
0

0O�H �: �26�

To check the scaling estimate given in (26) we plot our

simulation results for dw/dxv0 as a function of H in
Fig. 11 (left). The dw/dxv0 seems indeed to follow a lin-
ear relationship with H with a constant of proportion-

ality equal to 0.021.
Let us also consider the velocity gradient in the

centre of the channel, i.e. at x=0.5. If the velocity pro-

®le would conform here to standard outer-layer scal-
ing, this would imply

d �w

dx

����
0:5

0wo

h
0O�H 4=9�: �27�

In Fig. 11 (right) we have also plotted this velocity
gradient in the centre of the channel which con®rms

the scaling (27).
To continue our discussion on the scaling of the

mean velocity, we note that another restriction to be

satis®ed is the equation of motion for the mean vel-
ocity (7). We have already seen that both the tempera-
ture and the Reynolds stress can be scaled in terms of
outer- and inner-layer variables. Therefore, (7) implies

that the scaling of the second derivative of the mean
velocity should also be subdivided in an inner and an
outer layer.

Based on this fact and that at the same time the vel-
ocity gradient at the wall should satisfy an O(H )
scaling, we propose the following similarity form for

the velocity gradient

d �w=dx j0 ÿd �w=dx

wi=li
� f

0
w

�
x

li

�
: �28�

To formulate a scaling for the mean velocity pro®le in

the outer layer we use the result given by (27) and il-
lustrated in Fig. 11 (right). Based hereon, we propose
for the mean velocity pro®le in the outer layer

d �w=dx

wo=h
� F 0w

�
x

h

�
: �29�

In Fig. 12 we present our DNS data in terms of both
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scaling relationships (28) and (29). The results show

that in view of the large variation of the velocity found

in Fig. 4, the DNS data collapse quite well onto a

single curve both in the inner and outer layer. This is

in particular the case for the outer layer where it seems

that the scale mean velocity gradient can be very well

described by a constant value.

Let us now consider the matching of both ex-

pressions (28) and (29). Because the velocity gradient

in the inner layer is formulated in terms of a defect

law, we can apply our matching arguments only to the

second derivative of the velocity. Using standard argu-

ments for matching as discussed in Section 4.2, we ®nd

that the following matching relationship for the vel-
ocity gradient should apply

d �w=dx j0 ÿd �w=dx

wi=li
� ÿc3

�
x

li

�ÿ2=3
�A2

d �w=dx

wo=h
� c3

�
x

h

�ÿ2=3
�B2: �30�

We expect this matching result to apply in more or less
the same region as the matching we have found for the
Reynolds stress (see Fig. 10). However, we could not

Fig. 13. The velocity pro®le in the inner layer as expressed by a wall function relationship (solid line) and the DNS data (symbols)

for Ra=5.4�105 (upper left), Ra=8.2� 105 (upper right), Ra=2� 106 (lower left) and Ra=5�106 (lower right).
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®nd in this region, a convincing ®t by means of (30) to
the DNS data. A reason for this failure may perhaps
be that the matching region is still too small. Namely,

although the Rayleigh number may seem very high, it
should be realised that in view of the background of
DNS our results are representative of only very low-

Reynolds number turbulence. Therefore, the limit
h/li41 may not be very well satis®ed. Another unre-
solved issue is an inconsistency between the inner and

outer velocity gradient in the matching region. In the
matching region the relations (30) should lead to the
same velocity gradients. However, the inner layer for-

mulation (28) suggest that the velocity gradient in the
matching region is O(H ) whereas (30) for the outer
layer leads to O(H 4/9) for the velocity gradient.
Therefore, despite the convincing scaling behaviour of

expressions (28) and (29) as shown in Fig. 12 we must
consider scaling for the mean velocity as being not
completely solved.

Nevertheless, the excellent scaling shown in Fig. 12
can be exploited to reconstruct the velocity pro®le by
integration of the expressions (28) and (29). Let us

concentrate on the velocity pro®le in the inner layer. A
direct integration of (28) in dimensional notation leads
to

w � d �w

dx

����
0

xÿ wi fw

�
s

li

�
: �31�

An expression for fw which seems to give a reasonable
®t to the DNS data of the velocity in the inner layer,
is found to be

w � d �w

dx

����
0

xÿ wi

C1

�
x

li

�2

C2 �
�
x

li

� �32�

where for the constants, the following values have
been found: C1=9.7, and C2=2.8.
The ®t of (32) to the DNS data is shown in Fig. 13.

The agreement is indeed quite reasonable which again
can be considered as indirect proof for the scaling as
proposed in (28). For Ra=2� 106 the agreement is not

as good as for the other three cases. The deviation
between (32) and the DNS data can be traced back to
the value of the velocity gradient at the wall, i.e. dw/

dxv0. Only an error of 3% in this gradient is su�cient
to explain the deviation found in Fig. 13. In any case
the results shown in Fig. 13 are su�ciently encour-
aging to propose (32) as a wall function for the mean

velocity.

5. Scaling of turbulence quantities

In this section we consider the scaling of various sec-

ond moments of turbulence quantities. Our point of
departure is again a scaling in terms of an inner- and
an outer-layer as we have used in the previous section.

5.1. Temperature ¯ux

Let us ®rst consider the horizontal temperature ¯ux
u 'T '. We have argued in Section 4.1 that the total hori-
zontal temperature ¯ux, ft given by (9), is constant and

Fig. 14. DNS data for the horizontal temperature ¯ux in inner-layer scaling (left) and outer-layer scaling (right); the meaning of

the symbols is given in Table 2.
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we have proposed ft as a characteristic scaling par-
ameter. Moreover, we have found in Section 4.2 that

the temperature pro®le can be scaled in terms of an
inner and outer layer where ft is used in both layers as

a characteristic scaling parameter. In view of (9), the
horizontal temperature ¯ux should also allow scaling

in terms of an inner and outer layer given, respectively,
by

u 0T 0

wiTi

� guy

�
x

li

�
�33�

u 0T 0

woTo

� Guy

�
x

h

�
: �34�

These scaling relationships are shown in Fig. 14 for

Fig. 15. DNS data for the vertical temperature ¯ux in inner-layer scaling (left) and outer-layer scaling (right); the meaning of the

symbols is given in Table 2.

Fig. 16. DNS data for the temperature variance in inner-layer scaling (left) and outer-layer scaling (right); the meaning of the sym-

bols is given in Table 2.
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our DNS data and it is clear that the scaling is very
well followed.

We note that both wiTi and woTo are, by de®nition,
equal to ft. In other words the scaling of the tempera-
ture ¯uid in the inner and outer layer is the same.

Matching of the inner and outer layer in an overlap
region then leads to the result that both guy and Guy

should become equal to a constant. Fig. 14 shows that

this matching behaviour is indeed reasonably well fol-
lowed.
Next we consider the vertical temperature ¯ux. The

scaling of this quantity is not as straightforward as for
the horizontal ¯ux. The most reasonable assumption
seems to be that the vertical ¯ux should scale in the
same way as the horizontal ¯ux or alternatively that

the ratio of the horizontal to the vertical ¯ux should
become a constant, i.e. independent of Ra. Although
reasonable, it should be stressed that a real argument

for this assumption is lacking. Nevertheless continuing,
we ®nd that the vertical temperature ¯ux in the inner
and outer layer should scale, respectively, as

w 0T 0

wiTi

� gwy

�
x

li

�
�35�

w 0T 0

woTo

� Gwy

�
x

h

�
: �36�

These scaling relationships are given for our DNS data

in Fig. 15. Although the scaling for w 'T ' is not as
clear as for u 'T ', there are at present no arguments to
propose another scaling.

5.2. Temperature variance

For the temperature variance we expect the same

scaling to hold as for the mean temperature itself. This
means that the temperature variance in the inner and
outer layer can be expressed as

T 02

T 2
i

� g2y

�
x

li

�
�37�

T 02

T 2
o

� G2
y

�
x

h

�
: �38�

These scaling relationships are illustrated in Fig. 16 for
our DNS data. It is clear that the scaling given by (37)
and (38) is very well followed.

Matching the expressions (37) and (38) in the over-
lap region leads to the following explicit pro®les for
the temperature variance

T 02

T 2
i

� c4

�
x

li

�ÿ2=3
�39�

T 02

T 2
o

� c4

�
x

h

�ÿ2=3
�40�

in both the inner and outer layers, respectively. These
matching expressions are also shown in Fig. 16. It is

clear that for c4=2.0 these expressions give an excel-
lent ®t to the data for the temperature variance for x/
li>7 and x/h<0.3.

5.3. Velocity variances

Let us now turn to the variance of the velocity ¯uc-
tuations. Scaling in terms of wi and wo seems to be the
natural choice. However, let us ®rst consider the bud-

get equation of turbulent kinetic energy. For stationary
and for homogeneous conditions in the y- and z-direc-
tion, this equation in non-dimensional form reads [23]

0 � ÿu 0w 0 d �w

dx
�Hw 0y 0 � Te ÿ E �41�

where the ®rst two terms on the right-hand-side are,

respectively, the turbulence production by shear and
by buoyancy. The Te stands for the transport term
which describes the transport of kinetic energy by vel-

ocity and pressure ¯uctuations. The E denotes the
energy dissipation.
We consider ®rst the outer layer. Our DNS results

show that here Te is in general, small with respect to

the production terms and can thus be neglected in the
order-of-magnitude estimate needed fora scaling. The
resulting equation then expresses a balance between

the dissipation and the two production terms by shear
and buoyancy, respectively. For the production terms
we can obtain an order-of-magnitude estimate based

on the scaling results that we have discussed in the pre-
vious section. For the outer layer we ®nd for the shear
and buoyant production, respectively,

ÿu 0w 0 d �w

dx
' H �Nu �42�

Hw 0y 0 ' H �Nu �43�

which means that both production processes are

equally important and consistent with our discussion
on the scaling of the Reynolds-stress and temperature
integral given in the outer layer in Section 4.3. Let us

now introduce a velocity scale for the turbulence by
means of the dissipation which can be estimated as

E ' U3
o

h
: �44�
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Equating (44) with the scaling estimates (42) and (43)
for the production terms leads to

Uo ' �HNu�1=3: �45�
According to the results given in Table 3, this implies

that the scaling velocity Uo is equal to the velocity
scale wo.
Next we consider the inner layer. Here the choice

for the correct velocity scale is more complicated

because results presented by Boudjemadi et al. [12] and
by Versteegh and Nieuwstadt [22] show that in this
region the energy budget cannot be described by a

simple balance between production and dissipation.
For instance, as we have argued in Section 3, shear
production in the near-wall region is negative. A major

source of turbulence here is the transport term Te.
Let us assume that this transport term can be scaled

in terms of the velocity scale Uo in the outer layer and

in terms of the inner velocity scale Ui in the near-wall

Fig. 17. DNS data for the vertical velocity variance, w '2 in inner-layer scaling (left) and outer-layer scaling (right); the meaning of

the symbols is given in Table 2.

Fig. 18. DNS data for the horizontal velocity variance, u '2 in inner-layer scaling (left) and outer-layer scaling (right); the meaning

of the symbols is given in Table 2.
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Fig. 19. DNS data for the horizontal velocity variance, v '2 in inner-layer scaling (left) and outer-layer scaling (right); the meaning

of the symbols is given in Table 2.

inner region. As a result the composite expression for
Te in dimensional notation becomes

Te � U3
i

li
gTe

�
x

li

�
� U3

o

li
GTe

�
x

h

�
where we have omitted the subtraction of the matching
expression. Next we apply the constraint that when
integrated across the channel, the integral of the trans-

port term should, by de®nition, become zero.
Consequently, we ®nd

0 � U3
i

�1
0

gT�x� dx�U3
o

�0:5
0

GT�s� ds

with the result that

Ui � Uo:

The turbulence velocity scale in the inner layer is thus
equal to the velocity scale in the outer layer. This

equality of the two velocity scales implies that the
matching between the inner and outer layer results in a
constant value for the scaling function in the matching

region. Based on these results we shall consider the
scaling of the various velocity variances below.
We ®rst consider the scaling of the vertical velocity

variance w '2 which for the inner and outer layer reads

w 02

U2
i

� gw2

�
x

li

�
�46�

w 02

U2
o

� Gw2

�
x

h

�
: �47�

These expressions are illustrated in Fig. 17 in terms of
our DNS data. Except for the highest Rayleigh num-

ber case our scaling approach works reasonably well in
collapsing the data onto a single curve. Also the
matching in terms of a constant value for the functions

gw 2 and Gw 2 seems reasonably well followed.
The scaling results for the variance of the two hori-

zontal velocity components are illustrated in Figs. 18

and 19. Again the behaviour of the data for the high-
est Rayleigh number di�ers from the results for the
other Rayleigh numbers. With respect to the scaling

one could say that in comparison with the original
data for these variances shown in Figs. 5 and 6 the
scaled data seem to collapse reasonably well. However,
it is also clear that the scaling behaviour for these hori-

zontal variances seems to be slightly worse than for
the case of the vertical variance. Also the matching
results which implies a constant value in the matching

region, is not very well followed especially for the u '2

variance. Nevertheless, at this stage we have no other
evidence which would justify the introduction of

another scaling for the horizontal variances.

6. Summary and conclusions

By means of a DNS we have studied the natural
convection ¯ow between two in®nite di�erentially

heated vertical walls. Computations have been carried
out for a Rayleigh number which varies between
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5.4� 105±5� 106. The DNS results agree well with the

experimental data obtained by Dafa'Alla and Betts [6]
in a tall cavity.
The main objective of our investigation has been to

study the scaling behaviour of this natural convection
¯ow and based on the scaling to propose wall func-

tions. The point of departure has been the study by
George and Capp [17] who de®ne an inner and outer
layer and propose a scaling relationship for the mean

temperature and mean velocity in these layers. Based
on a matching of these inner and outer scaling re-
lationships an explicit expression for the mean pro®le

in the matching region is found. In addition a transfer
law can be derived by combining the inner- and outer-

layer pro®les in the matching region. For the mean
temperature these scaling results are in excellent agree-
ment with our DNS data. This can be considered as

con®rmation of previous studies based on experimental
data in which temperature pro®les have been found to
scale according to relationships proposed by George

and Capp [17].
The scaling of the mean velocity pro®le has proved

to be more di�cult and the scaling expressions for this
variable suggested by George and Capp [17] have not
been con®rmed by experiments. Therefore, we look for

an alternative scaling approach. For this we turn to
the equation of motion for the mean vertical velocity.
Based on an order-of-magnitude analysis of all the

terms in this equation we ®nd that the near-wall region
is governed by a balance between the viscous stress

and the buoyancy term. Based on this result we pro-
pose a scaling of the mean velocity pro®le in terms of
a defect law for the mean velocity gradient in the inner

layer. In the outer layer the velocity gradient is found
to scale in terms of the standard velocity scale intro-
duced by George and Capp [17]. This new scaling

agrees quite well with the DNS data. However, no
clear matching between the inner and outer layer pro-

®le could be found and, moreover, the formulation of
the inner and outer layer pro®le does not seem to be
completely consistent. Nevertheless, the good agree-

ment of scaling results with the DNS data allows us to
propose a wall function for the near-wall velocity
which can be used to prescribe a pro®le for this vel-

ocity.
We have also considered the scaling of several turbu-

lence variables. The Reynolds stress and the tempera-
ture variance are found to scale in an inner and outer
layer in terms of scaling variables introduced by

George and Capp [17]. The same scaling applies to the
horizontal temperature ¯ux. This latter result is per-

haps not so surprising because the (total) temperature
¯ux which is constant across the channel, has been
selected as one of the scaling parameters. A similar

scaling approach for the vertical heat ¯ux is not as
convincing. However, it is not clear whether this vari-

able should be scaled in terms of other variables.
Finally, we have considered the scaling of the variances

of the turbulent velocity ¯uctuations. Based on an
analysis of the kinetic energy budget we have formu-
lated an appropriate velocity scale valid in the inner

and outer layer. It turns out that in both regions the
velocity scales are equal to the outer velocity scale pro-
posed by George and Capp [17]. The DNS data for

the velocity variances con®rm this scaling especially for
the vertical velocity component.
At the start of this study, one could have perhaps

expected that the scaling of this natural convection
¯ow could be treated equivalently to the scaling of
standard near-wall turbulent shear ¯ows where one
also distinguishes between an inner and outer layer.

The scaling of the mean temperature pro®le seems to
support this expectation. However, the results based
on our DNS that we have presented here, show that

this is not the case of the velocity pro®le and also for
the velocity variances. Although the concept of an
inner and outer layer seems to remain valid, we have

found especially that the inner layer requires another
scaling than what we would have expected from the
standard scaling approach. For the mean velocity this

results in a scaling relationship according to a defect
law for the velocity gradient and for the velocity vari-
ance in the introduction of an alternative inner velocity
scale. Therefore, we must conclude that this natural

convection ¯ow may perhaps seem simple in terms of
¯ow geometry, its physics and therefore, its scaling
behaviour appears to be far from simple.
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